1、准备工作
(1)主机名映射S
# vi /etc/hosts vi /etc/hosts
#127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
#::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.186.100 hadoop100
注意:宿主的WIndows系统也要一样配置hadoop100并且映射到虚拟机的ip上
(2)SSH免密登录
Centos7默认安装了sshd服务,可使用ssh协议远程开启对其他主机shell的服务。
如果没有可以使用yum安装
sudo yum -y install openssl-devel
由于Hadoop集群的机器之间ssh通信默认需要输入密码,在集群运行时我们不可能为每一次通信都手动输入密码,因此需要配置机器之间的ssh的免密登录。
即使是单机伪分布式的Hadoop环境也不例外,一样需要配置本地对本地ssh连接的免密。
hadoop@hadoop100 ~]$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/hadoop/.ssh/id_rsa):
Created directory '/home/hadoop/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/hadoop/.ssh/id_rsa.
Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:yQYChs4eniVLeICaI2bCB9HopbXUBE9v0lpLjBACUnM hadoop@hadoop100
The key's randomart image is:
+---[RSA 2048]----+
|==O+Eo |
|=+.O+.= |
|Bo* o+.B |
|B%.+ .*o.. |
|OoB . .S |
| = . |
| |
| |
| |
+----[SHA256]-----+
[hadoop@hadoop100 ~]$ cd ~/.ssh/
[hadoop@hadoop100 .ssh]$ cat id_rsa.pub >> authorized_keys
[hadoop@hadoop100 .ssh]$ chmod 600 authorized_keys
[hadoop@hadoop100 .ssh]$ ssh hadoop@hadoop100
The authenticity of host 'hadoop100 (192.168.186.100)' can't be established.
ECDSA key fingerprint is SHA256:aGLhdt3bIuqtPgrFWnhgrfTKUbDh4CWVTfIgr5E5oV0.
ECDSA key fingerprint is MD5:b8:bd:b3:65:fe:77:2c:06:2d:ec:58:3a:97:51:dd:ca.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hadoop100,192.168.186.100' (ECDSA) to the list of known hosts.
Last login: Sat Jan 9 10:16:53 2021 from 192.168.186.1
[hadoop@hadoop100 ~]$ exit
登出
Connection to hadoop100 closed.
[hadoop@hadoop100 .ssh]$
大致流程:
ssh-keygen命令生成RSA加密的密钥对(公钥和私钥)- 将公钥添加到~/.ssh目录下的authorized_keys文件中
- 如机器A需要SSH连接到机器B,就需要将机器A生成的公钥发送到机器B的authorized_keys文件中进行认证
- 如果需要和自己通信,就把自己生成的公钥放在自己的authorized_keys文件中即可
- 使用ssh命令连接本地终端,如果不需要输入密码则本地的免密配置成功
(3)配置时间同步
集群中的通信和文件传输一般是以系统时间作为约定条件的。所以当集群中机器之间系统如果不一致可能导致各种问题发生,比如访问时间过长,甚至失败。所以配置机器之间的时间同步非常重要。
另外,单机伪分布式可以无需配置时间同步服务器,只需要定时使用nptdate命令校准即可。
以下操作必须切换成root用户
安装ntp
[hadoop@hadoop100 .ssh]$ su root
密码:
[root@hadoop100 .ssh]# rpm -qa | grep ntp
[root@hadoop100 .ssh]# yum install -y ntp
- rpm -qa查询是否已经安装了ntp
- 如果没有则安装ntp
修改/etc/sysconfig/ntpd,增加如下内容(让硬件时间和系统时间一起同步)
SYNC_HWCLOCK=yes
(4)定时校正时间
使用ntpdate命令手动的校正时间。
[root@hadoop100 .ssh]# ntpdate cn.pool.ntp.org
9 Jan 11:49:13 ntpdate[11274]: adjust time server 185.209.85.222 offset -0.016417 sec
[root@hadoop100 .ssh]# date
2021年 01月 09日 星期六 11:49:32 CST
观察时间是否与你所在的时区一致,如果不一致请查看【常见问题】寻找解决办法。
接下来使用crontab定时任务来每10分钟校准一次
# 编辑新的定时任务
[root@hadoop100 .ssh]# crontab -e
*/10 * * * * /usr/sbin/ntpdate cn.pool.ntp.org
# 查看root账户下所有定时任务
[root@hadoop100 .ssh]# crontab -l
*/10 * * * * /usr/sbin/ntpdate cn.pool.ntp.org
为了测试,先修改时间为错误时间
[root@hadoop100 .ssh]# date -s '2020-1-1 01:01'
2020年 01月 01日 星期三 01:01:00 CST
10分钟后再次查看
[root@hadoop100 .ssh]# date
2021年 01月 09日 星期六 14:12:12 CST
说明自动校准已经设置
默认crontab定时任务就是开机自动启动的
[root@hadoop100 .ssh]# systemctl list-unit-files | grep crond
crond.service enabled
(5)统一目录结构
接下来切换用户为hadoop账户
[hadoop@hadoop100 opt]$ sudo mkdir /opt/download
[hadoop@hadoop100 opt]$ sudo mkdir /opt/data
[hadoop@hadoop100 opt]$ sudo mkdir /opt/bin
[hadoop@hadoop100 opt]$ sudo mkdir /opt/tmp
[hadoop@hadoop100 opt]$ sudo mkdir /opt/pkg
# 更改opt下目录的用户及其所在用户组为hadoop
[hadoop@hadoop100 opt]$ sudo chown hadoop:hadoop /opt/*
[hadoop@hadoop100 opt]$ ls
bin data download pkg tmp
[hadoop@hadoop100 opt]$ ll
总用量 0
drwxr-xr-x. 2 hadoop hadoop 6 1月 9 14:29 bin
drwxr-xr-x. 2 hadoop hadoop 6 1月 9 14:29 data
drwxr-xr-x. 2 hadoop hadoop 6 1月 9 14:29 download
drwxr-xr-x. 2 hadoop hadoop 6 1月 9 14:37 pkg
drwxr-xr-x. 2 hadoop hadoop 6 1月 9 14:36 tmp
目录规划如下:
/opt/
├── bin # shell脚本
├── data # 程序需要使用的数据
├── download # 下载的软件安装包
├── pkg # 解压方式安装的软件
└── tmp # 存放程序生成的临时文件
2、安装jdk
检查是否已经安装过JDK
[hadoop@hadoop100 download]$ rpm -qa | grep java
# 或者
[hadoop@hadoop100 download]$ yum list installed | grep java
如果没有jdk或者jdk版本低于1.8,则重新安装jdk1.8
下载安装包到/opt/download/然后解压到/opt/pkg
[hadoop@hadoop100 download]$ tar -zxvf jdk-8u261-linux-x64.tar.gz
[hadoop@hadoop100 download]$ mv jdk1.8.0_261 /opt/pkg/java
配置java环境变量
确认jdk的解压路径
[hadoop@hadoop100 java]$ pwd
/opt/pkg/java
编辑/etc/profile.d/env.sh配置文件(没有则创建)
[hadoop@hadoop100 java]$ sudo vim /etc/profile.d/env.sh
在后面添加新的环境变量配置
# JAVA_HOME
export JAVA_HOME=/opt/pkg/java
export PATH=$JAVA_HOME/bin:$PATH
使新的环境变量立刻生效
[hadoop@hadoop100 java]$ source /etc/profile.d/env.sh
验证环境变量
[hadoop@hadoop100 java]$ java -version
[hadoop@hadoop100 java]$ java
[hadoop@hadoop100 java]$ javac
3、安装Hadoop
-
解压
[hadoop@hadoop100 hadoop]$ tar -zxvf hadoop.tar.gz -C /opt/pkg/ -
编辑
/etc/profile.d/env.sh配置文件,添加环境变量# JAVA_HOME export JAVA_HOME=/opt/pkg/java export PATH=$JAVA_HOME/bin:$PATH # HADOOP_HOME export HADOOP_HOME=/opt/pkg/hadoop export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH -
使新的环境变量立刻生效
[hadoop@hadoop100 opt]$ source /etc/profile.d/env.sh -
验证
[hadoop@hadoop100 opt]$ hadoop version -
修改相关命令执行环境
hadoop/etc/hadoop/hadoop-env.sh - hadoop命令执行环境
# The java implementation to use. export JAVA_HOME=/opt/pkg/java- 修改JAVA_HOME为真实JDK路径即可
-
hadoop/etc/hadoop/yarn.env.sh - yarn命令执行环境
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/ export JAVA_HOME=/opt/pkg/java- 添加JAVA_HOME为真实JDK路径即可
-
hadoop/etc/hadoop/mapred.env.sh - map reducer命令执行环境
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/ export JAVA_HOME=/opt/pkg/java- 添加JAVA_HOME为真实JDK路径即可
-
修改配置-实现伪分布式环境,来到 hadoop/etc/hadoop/,修改以下配置文件
hadoop/etc/hadoop/core-site.xml - 核心配置文件
fs.defaultFS hdfs://hadoop100:8020 hadoop.tmp.dir /opt/pkg/hadoop/data/tmp io.file.buffer.size 4096 fs.trash.interval 10080 -
主机名修改成本机的主机名
-
hadoop.tmp.dir十分重要,保存这个hadoop集群中namenode和datanode的所有数据
-
-
hadoop/etc/hadoop/hdfs-site.xml - HDFS相关配置
dfs.replication 1 dfs.namenode.secondary.http-address hadoop100:9868 dfs.namenode.http-address hadoop100:9870 dfs.permissions false -
dfs.replication默认是3,为了节省虚拟机资源,这里设置为1
-
全分布式情况下,SecondaryNameNode和NameNode 应分开部署
-
dfs.namenode.secondary.http-address默认就是本地,如果是伪分布式可以不用配置
-
-
hadoop/etc/hadoop/mapred-site.xml - mapreduce 相关配置
mapreduce.framework.name yarn mapreduce.jobhistory.address hadop100:10020 mapreduce.jobhistory.webapp.address hadoop100:19888 yarn.app.mapreduce.am.env HADOOP_MAPRED_HOME=/opt/pkg/hadoop mapreduce.map.env HADOOP_MAPRED_HOME=/opt/pkg/hadoop mapreduce.reduce.env HADOOP_MAPRED_HOME=/opt/pkg/hadoop
-
mapreduce.jobhistory相关配置是可选配置,用于查看MR任务的历史日志
- 这里主机名千万不要弄错,不然任务执行会失败,且不容易找原因
- 需要手动启动MapReduceJobHistory后台服务才能在Yarn的页面打开历史日志
- 这里主机名千万不要弄错,不然任务执行会失败,且不容易找原因
-
-
配置 yarn-site.xml
yarn.resourcemanager.hostname hadoop100 yarn.nodemanager.aux-services mapreduce_shuffle yarn.log-aggregation-enable true yarn.log-aggregation.retain-seconds 604800 yarn.nodemanager.vmem-check-enabled false yarn.nodemanager.pmem-check-enabled false -
workers DataNode 节点配置
vi workers [hadoop@hadoop100 hadoop]$ vi workers hadoop100- 如果是伪分布式可以不进行修改,默认是localhost, 也可以改成本机的主机名
-
全分布式配置则需要每行输入一个DataNode主机名
- 注意不要有空格和空行,因为其他脚本会获取相关主机名信息
4、格式化名称节点
格式化:HDFS(NameNode)
hadoop@hadoop100 hadoop]$ hdfs namenode -format
21/01/09 19:27:21 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop100/192.168.186.100
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.7.3
************************************************************/
21/01/09 19:27:21 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
21/01/09 19:27:21 INFO namenode.NameNode: createNameNode [-format]
Formatting using clusterid: CID-08318e9e-e202-48f3-bcb1-548ca50310c9
21/01/09 19:27:22 INFO util.GSet: Computing capacity for map BlocksMap
21/01/09 19:27:22 INFO util.GSet: VM type = 64-bit
21/01/09 19:27:22 INFO util.GSet: 2.0% max memory 966.7 MB = 19.3 MB
21/01/09 19:27:22 INFO util.GSet: capacity = 2^21 = 2097152 entries
21/01/09 19:27:22 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
21/01/09 19:27:22 INFO blockmanagement.BlockManager: defaultReplication = 1
21/01/09 19:27:22 INFO blockmanagement.BlockManager: maxReplication = 512
21/01/09 19:27:22 INFO blockmanagement.BlockManager: minReplication = 1
21/01/09 19:27:22 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
21/01/09 19:27:22 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
21/01/09 19:27:22 INFO blockmanagement.BlockManager: encryptDataTransfer = false
21/01/09 19:27:22 INFO blockmanagement.BlockManager: maxNumBlocksToLog = 1000
21/01/09 19:27:22 INFO namenode.FSNamesystem: fsOwner = hadoop (auth:SIMPLE)
21/01/09 19:27:22 INFO namenode.FSNamesystem: supergroup = supergroup
21/01/09 19:27:22 INFO namenode.FSNamesystem: isPermissionEnabled = false
21/01/09 19:27:22 INFO namenode.FSNamesystem: HA Enabled: false
21/01/09 19:27:22 INFO namenode.FSNamesystem: Append Enabled: true
21/01/09 19:27:23 INFO common.Storage: Storage directory /opt/pkg/hadoop/data/tmp/dfs/name has been successfully formatted.
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at hadoop100/192.168.186.100
************************************************************/
-
注意格式化后会在hdfs-site.xml中指定的hadoop.tmp.dir目录中生成相关数据
-
其中NameNode和DataNode的数据文件夹中应保存着一致的ClusterID(CID)
[hadoop@hadoop100 hadoop]$ cat /opt/pkg/hadoop/data/tmp/dfs/name/current/VERSION #Sat Jan 09 19:27:23 CST 2021 namespaceID=637773384 clusterID=CID-08318e9e-e202-48f3-bcb1-548ca50310c9 cTime=0 storageType=NAME_NODE blockpoolID=BP-1926974917-192.168.186.100-1610191643341 layoutVersion=-63 [hadoop@hadoop100 hadoop]$ cat /opt/pkg/hadoop/data/tmp/dfs/data/current/VERSION #Sat Jan 09 19:33:49 CST 2021 storageID=DS-6abf02d0-274c-4b7a-9d1d-05ed7d73636a clusterID=CID-08318e9e-e202-48f3-bcb1-548ca50310c9 cTime=0 datanodeUuid=44ff2304-01b1-4d8a-8a42-a2ad6e62ebba storageType=DATA_NODE layoutVersion=-56- 如果多次格式化就会导致NamdeNode新生成的CID和DataNode不一致
- 解决办法,停止集群,将DN的CID修改成和NN的CID一致,再启动集群
5、运行和测试
启动Hadoop环境,刚启动Hadoop的HDFS系统后会有几秒的安全模式,安全模式期间无法进行任何数据处理,这也是为什么不建议使用start-all.sh脚本一次性启动DFS进程和Yarn进程,而是先启动dfs后过30秒左右再启动Yarn相关进程。
启动DFS进程:
[hadoop@hadoop100 hadoop]$ start-dfs.sh
Starting namenodes on [hadoop100]
hadoop100: starting namenode, logging to /opt/pkg/hadoop/logs/hadoop-hadoop-namenode-hadoop100.out
hadoop100: starting datanode, logging to /opt/pkg/hadoop/logs/hadoop-hadoop-datanode-hadoop100.out
Starting secondary namenodes [hadoop100]
hadoop100: starting secondarynamenode, logging to /opt/pkg/hadoop/logs/hadoop-hadoop-secondarynamenode-hadoop100.out
启动YARN进程:
[hadoop@hadoop100 hadoop]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /opt/pkg/hadoop/logs/yarn-hadoop-resourcemanager-hadoop100.out
hadoop100: starting nodemanager, logging to /opt/pkg/hadoop/logs/yarn-hadoop-nodemanager-hadoop100.out
启动MapReduceJobHistory后台服务 - 用于查看MR执行的历史日志
[hadoop@hadoop100 mapreduce]$ mr-jobhistory-daemon.sh start historyserver
停止集群(可以做成脚本)
stop-dfs.sh
stop-yarn.sh
# 已过时 mr-jobhistory-daemon.sh stop historyserver
mapred --daemon stop historyserver
单个进程逐个启动
# 在主节点上使用以下命令启动 HDFS NameNode: # 已过时 hadoop-daemon.sh start namenode hdfs --daemon start namenode # 在主节点上使用以下命令启动 HDFS SecondaryNamenode: # 已过时 hadoop-daemon.sh start secondarynamenode hdfs --daemon start secondarynamenode # 在每个从节点上使用以下命令启动 HDFS DataNode: # 已过时 hadoop-daemon.sh start datanode hdfs --daemon start datanode # 在主节点上使用以下命令启动 YARN ResourceManager: # 已过时 yarn-daemon.sh start resourcemanager yarn --daemon start resourcemanager # 在每个从节点上使用以下命令启动 YARN nodemanager: # 已过时 yarn-daemon.sh start nodemanager yarn --daemon start nodemanager以上脚本位于
$HADOOP_HOME/sbin/目录下。如果想要停止某个节点上某个角色,只需要把命令中的start 改为stop 即可。
Web界面进行验证


执行jps命令,看看是否会有如下进程:
[hadoop@hadoop100 hadoop]$ jps
14608 NodeManager
14361 SecondaryNameNode
14203 DataNode
14510 ResourceManager
14079 NameNode
14910 Jps
使用官方自带的示例程序测试
[hadoop@hadoop100 mapreduce]$ cd /opt/pkg/hadoop/share/hadoop/mapreduce
[hadoop@hadoop100 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount
Usage: wordcount [...]
准备输入文件,并上传到HDFS系统
[hadoop@hadoop100 input]$ cat /opt/data/mapred/input/wc.txt
hadoop hadoop hadoop
hi hi hi hello hadoop
hello world hadoop
[hadoop@hadoop100 input]$ hadoop fs -mkdir -p /input/wc
[hadoop@hadoop100 input]$ hadoop fs -put wc.txt /input/wc/
Found 1 items
-rw-r--r-- 1 hadoop supergroup 62 2021-01-09 20:15 /input/wc/wc.txt
[hadoop@hadoop100 input]$ hadoop fs -cat /input/wc/wc.txt
hadoop hadoop hadoop
hi hi hi hello hadoop
hello world hadoop
运行示例wordcount程序,并将结果输出到/output/wc之中
[hadoop@hadoop100 mapreduce]$ cd /opt/pkg/hadoop/share/hadoop/mapreduce
[hadoop@hadoop100 mapreduce]$ hadoop jar hadoop-mapreduce-examples-2.7.3.jar wordcount /input/wc/ /output/wc/
21/01/09 20:23:27 INFO client.RMProxy: Connecting to ResourceManager at hadoop100/192.168.186.100:8032
21/01/09 20:23:28 INFO input.FileInputFormat: Total input paths to process : 1
21/01/09 20:23:28 INFO mapreduce.JobSubmitter: number of splits:1
21/01/09 20:23:29 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1610194940581_0001
21/01/09 20:23:29 INFO impl.YarnClientImpl: Submitted application application_1610194940581_0001
21/01/09 20:23:29 INFO mapreduce.Job: The url to track the job: http://hadoop100:8088/proxy/application_1610194940581_0001/
21/01/09 20:23:29 INFO mapreduce.Job: Running job: job_1610194940581_0001
21/01/09 20:23:43 INFO mapreduce.Job: Job job_1610194940581_0001 running in uber mode : false
21/01/09 20:23:43 INFO mapreduce.Job: map 0% reduce 0%
21/01/09 20:23:52 INFO mapreduce.Job: map 100% reduce 0%
21/01/09 20:24:00 INFO mapreduce.Job: map 100% reduce 100%
21/01/09 20:24:01 INFO mapreduce.Job: Job job_1610194940581_0001 completed successfully
21/01/09 20:24:02 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=52
FILE: Number of bytes written=237407
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=164
HDFS: Number of bytes written=30
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=7041
Total time spent by all reduces in occupied slots (ms)=5566
Total time spent by all map tasks (ms)=7041
Total time spent by all reduce tasks (ms)=5566
Total vcore-milliseconds taken by all map tasks=7041
Total vcore-milliseconds taken by all reduce tasks=5566
Total megabyte-milliseconds taken by all map tasks=7209984
Total megabyte-milliseconds taken by all reduce tasks=5699584
Map-Reduce Framework
Map input records=3
Map output records=11
Map output bytes=106
Map output materialized bytes=52
Input split bytes=102
Combine input records=11
Combine output records=4
Reduce input groups=4
Reduce shuffle bytes=52
Reduce input records=4
Reduce output records=4
Spilled Records=8
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=146
CPU time spent (ms)=2570
Physical memory (bytes) snapshot=339308544
Virtual memory (bytes) snapshot=4163043328
Total committed heap usage (bytes)=219676672
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=62
File Output Format Counters
Bytes Written=30
- 注意,输入是文件夹,可以指定多个
- 输出是一个必须不能存在的文件夹路径
- 计算结果会写入到output指定的文件夹中
查看保存在HDFS上的结果
[hadoop@hadoop100 mapreduce]$ hadoop fs -ls /output/wc/
Found 2 items
-rw-r--r-- 1 hadoop supergroup 0 2021-01-09 20:23 /output/wc/_SUCCESS
-rw-r--r-- 1 hadoop supergroup 30 2021-01-09 20:23 /output/wc/part-r-00000
[hadoop@hadoop100 mapreduce]$ hadoop fs -cat /output/wc/part-r-00000
hadoop 5
hello 2
hi 3
world 1
在MR任务执行时,可以通过Yarn的界面查看进度

执行完毕以后点击TrackingUI下的History可以查看历史日志记录
如果跳转页面报404说明没有启动JobHistoryServer服务
[hadoop@hadoop100 mapreduce]$ mr-jobhistory-daemon.sh start historyserver

也可以在HDFS的Web界面上查看结果

Utilities -> HDFS browser -> /output/wc/ -> click part-r-00000 -> download part-r-00000
[hadoop@hadoop100 hadoop]$ stop-all.sh
This script is Deprecated. Instead use stop-dfs.sh and stop-yarn.sh
Stopping namenodes on [hadoop100]
hadoop100: stopping namenode
hadoop100: stopping datanode
Stopping secondary namenodes [hadoop100]
hadoop100: stopping secondarynamenode
stopping yarn daemons
stopping resourcemanager
hadoop100: stopping nodemanager
no proxyserver to stop
6、常见问题:
(1)时间校准后仍然偏差几个小时
使用nptdate 进行时间校准后发现校准后的时间仍然偏移很多,这是因为时区的设置问题(如果是纽约时间, 则相差13个小时),修改时区的方法就是删除原来的软链。软链的位置:
ll /etc/localtime
/etc/localtime -> ../usr/share/zoneinfo/America/New_York
rm /etc/localtime
删除后时间就变成了UTC时间 - 格林威治时间,与中国时间相差8个小时
接下来只需要重新生成一个指向中国时区的软链,就可以正常显示中国时区的时间了
$ sudo ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
这样时区就没问题了
(2)没有DataNode
如果多次格式化会导致NamdeNode新生成的CID和DataNode不一致
-
解决办法,
- 停止集群,将DN的CID修改成和NN的CID一致,格式化NN,再启动集群
- 建议
- 停止集群,删除hadoop.tmp.dir下的所有内容,格式化NN,再启动集群
- 不建议,会丢失数据,如果不怕丢失数据可以这样做
(3)MapReducer任务失败
有很多原因,主要是分析日志的信息
一般的原因是:
-
缺少服务进程
- 查找对应服务的日志
-
输出目录已经存在
- 删除已经存在的目录或者改为不存在的目录
-
Host无法解析
- 检查/etc/hosts的映射的主机名和ip是否准确
- 检查所有配置文件中的主机名和端口号是否正确
-
其他的错误
-
可以通过MR的历史日志进行定位
-
或者通过MR任务的Yarn日志查看任务执行细节
yarn logs -applicationId -
Views: 98
