HBase(九)集成MapReduce

HBase表中的数据最终都是存储在HDFS上,HBase天生的支持MR的操作,我们可以通过MR直接处理HBase表中的数据,并且MR可以将处理后的结果直接存储到HBase表中。

参考: http://hbase.apache.org/book.html#mapreduce

实战一:HBase表到HBase表

需求:读取HBase当中myuser这张表的f1:name、f1:age数据,将数据写入到另外一张myuser2表的f1列族里面去

第一步:创建myuser2这张hbase表

注意:列族的名字要与myuser表的列族名字相同

create 'myuser2','f1'

第二步:创建maven工程并导入jar包

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>XZK</artifactId>
        <groupId>org.example</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>

    <artifactId>HbaseMrDdemo</artifactId>

    <dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.1.4</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-auth</artifactId>
            <version>3.1.4</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-client -->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>2.2.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-mapreduce</artifactId>
            <version>2.2.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-server</artifactId>
            <version>2.2.2</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.testng</groupId>
            <artifactId>testng</artifactId>
            <version>6.14.3</version>
            <scope>test</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                    <!--    <verbal>true</verbal>-->
                </configuration>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.2</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*/RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

第三步:开发MR程序实现功能

自定义map类

package com.kkb.hbase.mr;

import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.Text;

import java.io.IOException;

public class HBaseReadMapper extends TableMapper<Text, Put> {
    /**
     * @param key     rowKey
     * @param value   rowKey此行的数据 Result类型
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException {
        // 获得rowKey的字节数组
        byte[] rowKeyBytes = key.get();
        String rowKeyStr = Bytes.toString(rowKeyBytes);
        Text text = new Text(rowKeyStr);

        // 输出数据 -> 写数据 -> Put 构建Put对象
        Put put = new Put(rowKeyBytes);
        // 获取一行中所有的Cell对象
        Cell[] cells = value.rawCells();
        // 将f1 : name& age输出
        for (Cell cell : cells) {
            //当前cell是否是f1
            //列族
            byte[] familyBytes = CellUtil.cloneFamily(cell);
            String familyStr = Bytes.toString(familyBytes);
            if ("f1".equals(familyStr)) {
                //在判断是否是name | age
                byte[] qualifier_bytes = CellUtil.cloneQualifier(cell);
                String qualifierStr = Bytes.toString(qualifier_bytes);
                if ("name".equals(qualifierStr)) {
                    put.add(cell);
                }
                if ("age".equals(qualifierStr)) {
                    put.add(cell);
                }
            }
        }

        // 判断是否为空;不为空,才输出
        if (!put.isEmpty()) {
            context.write(text, put);
        }
    }
}

自定义reduce类

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.io.Text;
import java.io.IOException;

/**
 * TableReducer第三个泛型包含rowkey信息
 */
public class HBaseWriteReducer extends TableReducer<Text, Put, ImmutableBytesWritable> {
    //将map传输过来的数据,写入到hbase表
    @Override
    protected void reduce(Text key, Iterable<Put> values, Context context) throws IOException, InterruptedException {
        //rowkey
        ImmutableBytesWritable immutableBytesWritable = new ImmutableBytesWritable();
        immutableBytesWritable.set(key.toString().getBytes());

        //遍历put对象,并输出
        for(Put put: values) {
            context.write(immutableBytesWritable, put);
        }
    }
}

main入口类

package com.kkb.hbase.mr;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class Main extends Configured implements Tool {
    public static void main(String[] args) throws Exception {
        Configuration configuration = HBaseConfiguration.create();
        // 设定绑定的zk集群
        configuration.set("hbase.zookeeper.quorum", "hadoop100:2181,hadoop101:2181,hadoop102:2181");

        int run = ToolRunner.run(configuration, new Main(), args);
        System.exit(run);
    }

    @Override
    public int run(String[] args) throws Exception {
        Job job = Job.getInstance(super.getConf());
        job.setJarByClass(Main.class);

        // mapper
        TableMapReduceUtil.initTableMapperJob(TableName.valueOf("myuser"), new Scan(), HBaseReadMapper.class, Text.class, Put.class, job);
        // reducer
        TableMapReduceUtil.initTable ReducerJob("myuser2", HBaseWriteReducer.class, job);

        boolean b = job.waitForCompletion(true);
        return b ? 0 : 1;
    }
}

实战二: HDFS到HBase表

需求读取hdfs上面的数据,写入到hbase表里面去

hadoop102执行以下命令准备数据文件,并将数据文件上传到HDFS上面去

在/opt/data目录,创建user.txt文件

cd /opt/data
vim user.txt

内容如下:

0007    zhangsan    18
0008    lisi    25
0009    wangwu  20

将文件上传到hdfs的路径下面去

hdfs dfs -mkdir -p /hbase/input
hdfs dfs -put /opt/pkg/user.txt /hbase/input/

代码开发

package com.kkb.hbase.hdfs2hbase;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import java.io.IOException;

/**
 * 将HDFS上文件/hbase/input/user.txt数据,导入到HBase的myuser2表
 */
public class HDFS2HBase {
    public static class HdfsMapper extends Mapper<LongWritable, Text, Text, NullWritable> {

        // 数据原样输出
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            context.write(value, NullWritable.get());
        }
    }

    public static class HBaseReducer extends TableReducer<Text, NullWritable, ImmutableBytesWritable> {

        protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
            /**
             * key -> 一行数据
             * 样例数据:
             * 0007 zhangsan    18
             * 0008 lisi    25
             * 0009 wangwu  20
             */
            String[] split = key.toString().split("\t");

            Put put = new Put(Bytes.toBytes(split[0]));
            put.addColumn("f1".getBytes(), "name".getBytes(), split[1].getBytes());
            put.addColumn("f1".getBytes(), "age".getBytes(), split[2].getBytes());

            context.write(new ImmutableBytesWritable(Bytes.toBytes(split[0])), put);
        }
    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = HBaseConfiguration.create();
        // 设定zk集群
        conf.set("hbase.zookeeper.quorum", "hadoop100:2181,hadoop101:2181,hadoop102:2181");
        Job job = Job.getInstance(conf);

        job.setJarByClass(HDFS2HBase.class);

        // 可省略
        // job.setInputFormatClass(TextInputFormat.class);
        // 输入文件路径
        FileInputFormat.addInputPath(job, new Path("hdfs://hadoop100:8020/hbase/input"));

        job.setMapperClass(HdfsMapper.class);
        // map端的输出的key value 类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        // 指定输出到hbase的表名
        TableMapReduceUtil.initTableReducerJob("myuser2", HBaseReducer.class, job);

        // 设置reduce个数
        job.setNumReduceTasks(1);

        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

实战三:HDFS到HBase表(批量加载)

需求

通过bulkload的方式批量加载数据到HBase表中

将我们hdfs上面的这个路径/hbase/input/user.txt的数据文件,转换成HFile格式,然后load到myuser2这张表里面去

知识点描述:

  • 加载数据到HBase当中去的方式多种多样,我们可以使用HBase的javaAPI或者使用sqoop将我们的数据写入或者导入到HBase当中去,但是这些方式不是最佳的,因为在导入的过程中占用Region资源导致效率低下

  • 我们也可以通过MR的程序,将我们的数据直接转换成HBase的最终存储格式HFile,然后直接load数据到HBase当中去即可

HBase数据正常写流程回顾

bulkload方式的处理示意图

好处

  • 导入过程不占用Region资源
  • 能快速导入海量的数据
  • 节省内存
  1. 开发生成HFile文件的代码

自定义map类

import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

// 四个泛型中后两个,分别对应rowkey及put
public class BulkLoadMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] split = value.toString().split("\t");
        // 封装输出的rowkey类型
        ImmutableBytesWritable immutableBytesWritable = new ImmutableBytesWritable(split[0].getBytes());

        // 构建put对象
        Put put = new Put(split[0].getBytes());
        put.addColumn("f1".getBytes(), "name".getBytes(), split[1].getBytes());
        put.addColumn("f1".getBytes(), "age".getBytes(), split[2].getBytes());

        context.write(immutableBytesWritable, put);
    }
}

程序main

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.ConnectionFactory;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat2;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class HBaseBulkLoad extends Configured implements Tool {
    public static void main(String[] args) throws Exception {
        Configuration configuration = HBaseConfiguration.create();
        //设定zk集群
        configuration.set("hbase.zookeeper.quorum", "hadoop100:2181,hadoop101:2181,hadoop102:2181");

        int run = ToolRunner.run(configuration, new HBaseBulkLoad(), args);
        System.exit(run);
    }
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = super.getConf();
        Job job = Job.getInstance(conf);
        job.setJarByClass(HBaseBulkLoad.class);

        FileInputFormat.addInputPath(job, new Path("hdfs://hadoop100:8020/hbase/input"));
        job.setMapperClass(BulkLoadMapper.class);
        job.setMapOutputKeyClass(ImmutableBytesWritable.class);
        job.setMapOutputValueClass(Put.class);

        Connection connection = ConnectionFactory.createConnection(conf);
        Table table = connection.getTable(TableName.valueOf("myuser2"));

        //使MR可以向myuser2表中,增量增加数据
        HFileOutputFormat2.configureIncrementalLoad(job, table, connection.getRegionLocator(TableName.valueOf("myuser2")));
        //数据写回到HDFS,写成HFile -> 所以指定输出格式为HFileOutputFormat2
        job.setOutputFormatClass(HFileOutputFormat2.class);
        HFileOutputFormat2.setOutputPath(job, new Path("hdfs://hadoop100:8020/hbase/out_hfile"));

        //开始执行
        boolean b = job.waitForCompletion(true);

        return b? 0: 1;
    }
}

3、观察HDFS上输出的结果

4、加载HFile文件到hbase表中

方式一:代码加载

  package kkk.hbase.demo3;

  import org.apache.hadoop.conf.Configuration;
  import org.apache.hadoop.fs.Path;
  import org.apache.hadoop.hbase.HBaseConfiguration;
  import org.apache.hadoop.hbase.TableName;
  import org.apache.hadoop.hbase.client.Admin;
  import org.apache.hadoop.hbase.client.Connection;
  import org.apache.hadoop.hbase.client.ConnectionFactory;
  import org.apache.hadoop.hbase.client.Table;
  import org.apache.hadoop.hbase.tool.BulkLoadHFiles;

  public class LoadData {

      public static void main(String[] args) throws Exception {
          Configuration configuration = HBaseConfiguration.create();
          configuration.set("hbase.zookeeper.quorum", "hadoop100,hadoop101,hadoop102");
          // 获取数据库连接
          Connection connection = ConnectionFactory.createConnection(configuration);
          // 获取表的管理器对象
          Admin admin = connection.getAdmin();
          // 获取table对象
          TableName tableName = TableName.valueOf("myuser2");
          Table table = connection.getTable(tableName);
          // 构建BulkLoadHFiles加载HFile文件 hbase2.0 api
          BulkLoadHFiles load = BulkLoadHFiles.create(configuration);
          load.bulkLoad(tableName, new Path("hdfs://hadoop100:8020/hbase/out_hfile"));
      }

Views: 12

Index