数据同步工具 – DataX (阿里开源)

1、DataX 基本介绍

  • DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具,致力于实现包括:关系型数据库(MySQL、Oracle等)、HDFS、Hive、HBase、ODPS、FTP等各种异构数据源之间稳定高效的数据同步功能。

    datax

  • 设计理念

    • 为了解决异构数据源同步问题,DataX将复杂的网状的同步链路变成了星型数据链路,DataX作为中间传输载体负责连接各种数据源。当需要接入一个新的数据源的时候,只需要将此数据源对接到DataX,便能跟已有的数据源做到无缝数据同步。
  • 当前使用现状

    • DataX在阿里巴巴集团内被广泛使用,承担了所有大数据的离线同步业务,并已持续稳定运行了6年之久。目前每天完成同步8w多道作业,每日传输数据量超过300TB。
    • 此前已经开源DataX1.0版本,此次介绍为阿里云开源全新版本DataX 3.0,有了更多更强大的功能和更好的使用体验。Github主页地址:https://github.com/alibaba/DataX

DataX-logo

2、DataX 3.0 框架设计

  • DataX 本身作为离线数据同步框架,采用Framework + plugin 架构构建。将数据源读取和写入抽象成为Reader/Writer插件,纳入到整个同步框架中。
    • Reader
    • Reader 为数据采集模块,负责采集数据源的数据,将数据发送给 Framework。
    • Writer
    • Writer 为数据写入模块,负责不断向 Framework 取数据,并将数据写入到目的端。
    • Framework
    • Framework 用于连接 Reader 和 Writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。

datax3.0框架设计

3、DataX 3.0 插件体系

  • 经过几年积累,DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入。DataX目前支持数据如下:
类型 数据源 Reader(读) Writer(写) 文档
RDBMS 关系型数据库 MySQL
Oracle
SQLServer
PostgreSQL
DRDS
达梦
通用RDBMS(支持所有关系型数据库)
阿里云数仓数据存储 ODPS
ADS
OSS
OCS
NoSQL数据存储 OTS
Hbase0.94
Hbase1.1
MongoDB
Hive
无结构化数据存储 TxtFile
FTP
HDFS
Elasticsearch

4、DataX 3.0 核心架构

  • DataX 3.0 支持单机多线程模式完成 数据同步作业,本小节按一个DataX作业生命周期的时序图,从整体架构设计简要说明DataX各个模块之间的相互关系。

    DataX3.0核心架构

  • 核心模块介绍

      1. DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
      1. DataX Job启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
      1. 切分多个Task之后,DataX Job会调用 Scheduler 模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5。
      1. 每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作。
      1. DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0。
  • DataX调度流程

  • 举例来说,用户提交了一个DataX作业,并且配置了20个并发,目的是将一个100张分表的mysql数据同步到odps里面。 DataX的调度决策思路是:

      1. DataXJob根据分库分表切分成了100个Task。
      1. 根据20个并发,默认单个任务组的并发数量为5,DataX计算共需要分配4个TaskGroup。
      1. 这里4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。

5、DataX 安装部署

  • 安装前置要求

    • Linux
    • JDK ( 1.8 以上 )
    • Python ( 2.6 以上 )
  • 1、访问官网下载安装包

  • 2、上传安装包到服务器node01节点

  • 3、解压安装包到指定的目录中

  • 4、运行自检脚本测试

    image-20210511162206902

6、DataX 实战案例

6.1 从stream流读取数据并打印到控制台

  • 需求:使用datax实现读取字符串,然后打印到控制台。

  • 1、创建作业的配置文件(json格式)

    • 可以通过命令查看配置模板: python datax.py -r {YOUR_READER} -w {YOUR_WRITER}

    • 查看配置模板,执行脚本命令

  • 2、根据模板写配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 stream2stream.json, 文件内容如下:

    • 其中sliceRecordCount表示每个channel 生成数据的条数。

    • speed表示限速

    • channel表示任务并发数。

    • bytes表示每秒字节数,默认为0(不限速)。

    • errorLimit表示错误控制

    • record: 出错记录数超过record设置的条数时,任务标记为失败.

    • percentage: 当出错记录数超过percentage百分数时,任务标记为失败.

  • 3、动DataX

  • 4、观察控制台输出结果

6.2 从mysql表读取数据并打印到控制台

  • 需求:使用datax实现读取mysql一张表指定字段的数据,打印到控制台

  • 1、在mysql数据库中创建student表,并且加载数据到表中

  • 2、创建作业的配置文件(json格式)

    • 执行脚本命令(查看配置模板)

  • 3、根据模板写配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 mysql2stream.json, 文件内容如下:

  • 4、启动DataX

  • 5、观察控制台输出结果

6.3 从mysql表读取增量数据并打印到控制台

  • 需求:使用datax实现mysql表增量数据同步打印到控制台。

  • 1、创建作业的配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 mysqlAdd2stream.json, 文件内容如下:

  • 2、向student表中插入一条数据

  • 3、启动DataX

  • 4、观察控制台输出结果

6.4 使用datax实现mysql2mysql

  • 需求:使用datax实现将数据从mysql当中读取,并且通过sql语句实现数据的过滤,并且将数据写入到mysql另外一张表当中去。

  • 1、创建作业的配置文件(json格式)

    • 查看配置模板,执行脚本命令

  • 2、根据模板写配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 mysql2mysql.json, 文件内容如下:

  • 3、创建目标表

  • 4、启动DataX

  • 5、观察控制台输出结果

  • 6、查看person表数据

    image-20210512111811791

6.5 使用datax实现将mysql数据导入到hdfs

  • 需求: 将mysql表student的数据导入到hdfs的 /datax/mysql2hdfs/ 路径下面去。

  • 1、创建作业的配置文件(json格式)

    • 执行脚本命令查看配置模板

  • 2、根据模板写配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 mysql2hdfs.json, 文件内容如下:

  • 3、启HDFS, 创建目标路径

  • 4、启动DataX

  • 5、观察控制台输出结果

  • 6、查看HDFS上文件生成

    image-20210512113442247

6.6 使用datax实现将hdfs数据导入到mysql表中

  • 需求: 将hdfs上数据文件 user.txt 导入到mysql数据库的user表中。

  • 1、创建作业的配置文件(json格式)

    • 查看配置模板,执行脚本命令

  • 2、根据模板写配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 hdfs2mysql.json, 文件内容如下:

  • 3、准备HDFS上测试数据文件 user.txt

    • user.txt文件内容如下

    • 文件中每列字段通过\t 制表符进行分割,上传文件到hdfs上

  • 4、创建目标表

  • 5、启动DataX

  • 6、观察控制台输出结果

  • 7、查看user表数据

    image-20210512120344118

6.7 使用datax实现将mysql数据同步到hive表中

  • 需求 :使用datax将mysql中的 user表数据全部同步到hive表中

  • 1、创建一张hive表

    • 启动hiveserver2

    • 通过beeline连接hiveserver2

    • 创建数据库和表

  • 2、编写配置文件

    • 进入到 /kkb/install/datax/job 目录,然后创建配置文件 mysql2hive.json, 文件内容如下:

  • 3、启动DataX

  • 4、观察控制台输出结果

  • 5、查看hive中t_user表数据

    image-20210512172948034

Views: 56

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注