HBase(十三)存储引擎设计与LSM-tree

前言

在数据存储的领域,有两大阵营,以B+tree为基础的关系型数据库,MySQL,SQLServer。以及以LSM-tree为基础的NoSQL key-value 存储, LevelDB。 LSM是(Log Structured Merge的简称)在分布式存储系统中通常会被设计成append-only的系统,LSM系统主要是顺序写优化,例如commit log等等,并作为分布式系统底层的基石。因此,要了解LSM的实现是十分重要的,下面主要介绍基于跳表的LSM-tree的实现 (Skiplist-Based LSM tree)。

为什么使用LSM-tree

讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来:

  1. 哈希存储引擎 是哈希表的持久化实现,支持增、删、改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统。对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right

  2. B树存储引擎是B树(关于B树的由来,数据结构以及应用场景可以看之前一篇博文)的持久化实现,不仅支持单条记录的增、删、读、改操作,还支持顺序扫描(B+树的叶子节点之间的指针),对应的存储系统就是关系数据库(Mysql等)。

  3. LSM树(Log-Structured Merge Tree)存储引擎和B树存储引擎一样,同样支持增、删、读、改、顺序扫描操作。而且通过批量存储技术规避磁盘随机写入问题。当然凡事有利有弊,LSM树和B+树相比,LSM树牺牲了部分读性能,用来大幅提高写性能。

通过以上的分析,应该知道LSM树的由来了,LSM树的设计思想非常朴素:将对数据的修改增量保持在内存中,达到指定的大小限制后将这些修改操作批量写入磁盘。所以写入性能大大提升。

不过读取的时候需要合并磁盘中历史数据和内存中最近修改操作,读取时可能需要先看是否命中内存,否则需要访问较多的磁盘文件。

极端的说,基于LSM树实现的HBase的写性能比Mysql高了一个数量级,读性能低了一个数量级。

LSM树原理把一棵大树拆分成N棵小树,它首先写入内存中,随着小树越来越大,内存中的小树会flush到磁盘中,磁盘中的树定期可以做merge操作,合并成一棵大树,以优化读性能。

file

以上这些大概就是HBase存储的设计主要思想,这里分别对应说明下:

  1. 因为小树先写到内存中,为了防止内存数据丢失,写内存的同时需要暂时持久化到磁盘,对应了HBase的MemStore和HLog

  2. MemStore上的树达到一定大小之后,需要flush到HRegion磁盘中(一般是Hadoop DataNode),这样MemStore就变成DataNode上的磁盘文件StoreFile,定期HRegionServer对DataNode的数据做merge操作,彻底删除无效空间,多棵小树在这个时机合并成大树,来增强读性能。

LSM-Tree 原理

基于跳表的LSM-tree的实现 (Skiplist-Based LSM tree,以下简称为sLSM)

sLSM有两个宏观上(macrosocopic)的组件构成,内存中的buffer和磁盘的存储(in-memory buffer and disk-based store)。内存中的数据结构主要用于快速插入和对于buffered的数据进行查询。磁盘中的数据结构主要以层级的方式来存储数据,并提供merge的操作。

sLSM的实现,是基于Skiplist。即Memtable中使用Skiplist来快速查找。这里也可以有其他方式的实现,例如AVL, B-tree等。

LSM-tree在Level的实现如下图,可以看到主要有内存和磁盘的两大数据结构组件构成。内存中的数据结构支持缓存数据的查询(近期数据的查询),磁盘中的存储是层级形式的,且是不可变的(immuatble)。

file

关于LSM Tree,对于最简单的二层LSM Tree而言,内存中的数据和磁盘你中的数据merge操作,如下图

file

图来自lsm论文

lsm tree,理论上,可以是内存中树的一部分和磁盘中第一层树做merge,对于磁盘中的树直接做update操作有可能会破坏物理block的连续性,但是实际应用中,一般lsm有多层,当磁盘中的小树合并成一个大树的时候,可以重新排好顺序,使得block连续,优化读性能。

在hbase实现中,内存部分采用跳跃表来维护一个有序的KeyValue集合memstore,数据首先写入到memstore中,为了避免memstore内存数据丢失这里引入了WAL机制,会先将数据写入到所属regionServer的WAL日志中,也即HLog。memstore的数据达到某个级别的阈值之后,会进行写盘操作,形成一个有序的数据文件是(文件内部KeyValue有序),存储在磁盘上,磁盘部分则是对应的HFile。HFile就是一个小的树,因为hbase一般是部署在hdfs上,hdfs不支持对文件的update操作,而且最终随着磁盘文件越来越多,对读的影响很大。所以内存flush到磁盘上的小树,定期也会合并成一个大树。来增强读操作的性能,整体上hbase就是用了lsm tree的思路,如下图所示。

file

附加资料 – 跳表数据结构

SkipList(跳表) – 这种数据结构是由William Pugh于1990年在在 Communications of the ACM June 1990, 33(6) 668-676 发表了Skip lists: a probabilistic alternative to balanced trees,在其中详细描述了他的工作。由论文标题可知,SkipList的设计初衷是作为替换平衡树的一种选择。

什么是跳表

跳表全称为跳跃列表,它允许快速查询,插入和删除一个有序连续元素的数据链表。跳跃列表的平均查找和插入时间复杂度都是O(logn)。

快速查询是通过维护一个多层次的链表,且每一层链表中的元素是前一层链表元素的子集(见右边的示意图)。一开始时,算法在最稀疏的层次进行搜索,直至需要查找的元素在该层两个相邻的元素中间。这时,算法将跳转到下一个层次,重复刚才的搜索,直到找到需要查找的元素为止。

file

一张跳跃列表的示意图。每个带有箭头的框表示一个指针, 而每行是一个稀疏子序列的链表;底部的编号框(黄色)表示有序的数据序列。查找从顶部最稀疏的子序列向下进行, 直至需要查找的元素在该层两个相邻的元素中间。

跳表的演化过程

对于单链表来说,即使数据是已经排好序的,想要查询其中的一个数据,只能从头开始遍历链表,这样效率很低,时间复杂度很高,是 O(n)。

那我们有没有什么办法来提高查询的效率呢?我们可以为链表建立一个“索引”,这样查找起来就会更快,如下图所示,我们在原始链表的基础上,每两个结点提取一个结点建立索引,我们把抽取出来的结点叫做索引层或者索引,down 表示指向原始链表结点的指针。

file

现在如果我们想查找一个数据,比如说 15,我们首先在索引层遍历,当我们遍历到索引层中值为 14 的结点时,我们发现下一个结点的值为 17,所以我们要找的 15 肯定在这两个结点之间。这时我们就通过 14 结点的 down 指针,回到原始链表,然后继续遍历,这个时候我们只需要再遍历两个结点,就能找到我们想要的数据。好我们从头看一下,整个过程我们一共遍历了 7 个结点就找到我们想要的值,如果没有建立索引层,而是用原始链表的话,我们需要遍历 10 个结点。

通过这个例子我们可以看出来,通过建立一个索引层,我们查找一个基点需要遍历的次数变少了,也就是查询的效率提高了。

那么如果我们给索引层再加一层索引呢?遍历的结点会不会更少呢,效率会不会更高呢?我们试试就知道了。

file

现在我们再来查找 15,我们从第二级索引开始,最后找到 15,一共遍历了 6 个结点,果然效率更高。

当然,因为我们举的这个例子数据量很小,所以效率提升的不是特别明显,如果数据量非常大的时候,我们多建立几层索引,效率提升的将会非常的明显,感兴趣的可以自己试一下,这里我们就不举例子了。

这种通过对链表加多级索引的机构,就是跳表了。

跳表具体有多快

通过上边的例子我们知道,跳表的查询效率比链表高,那具体高多少呢?下面我们一起来看一下。

衡量一个算法的效率我们可以用时间复杂度,这里我们也用时间复杂度来比较一下链表和跳表。前面我们已经讲过了,链表的查询的时间复杂度为 O(n),那跳表的呢?

如果一个链表有 n 个结点,如果每两个结点抽取出一个结点建立索引的话,那么第一级索引的结点数大约就是 n/2,第二级索引的结点数大约为 n/4,以此类推第 m 级索引的节点数大约为 n/(2^m)。

假如一共有 m 级索引,第 m 级的结点数为两个,通过上边我们找到的规律,那么得出 n/(2^m)=2,从而求得 m=log(n)-1。如果加上原始链表,那么整个跳表的高度就是 log(n)。我们在查询跳表的时候,如果每一层都需要遍历 k 个结点,那么最终的时间复杂度就为 O(k*log(n))。

那这个 k 值为多少呢,按照我们每两个结点提取一个基点建立索引的情况,我们每一级最多需要遍历两个个结点,所以 k=2。为什么每一层最多遍历两个结点呢?

因为我们是每两个结点提取一个结点建立索引,最高一级索引只有两个结点,然后下一层索引比上一层索引两个结点之间增加了一个结点,也就是上一层索引两结点的中值,看到这里是不是想起来我们前边讲过的二分查找,每次我们只需要判断要找的值在不在当前结点和下一个结点之间即可。

file

如上图所示,我们要查询红色结点,我们查询的路线即黄线表示出的路径查询,每一级最多遍历两个结点即可。

所以跳表的查询任意数据的时间复杂度为 O(2*log(n)),前边的常数 2 可以忽略,为 O(log(n))。

跳表是用空间来换时间

跳表的效率比链表高了,但是跳表需要额外存储多级索引,所以需要的更多的内存空间。

跳表的空间复杂度分析并不难,如果一个链表有 n 个结点,如果每两个结点抽取出一个结点建立索引的话,那么第一级索引的结点数大约就是 n/2,第二级索引的结点数大约为 n/4,以此类推第 m 级索引的节点数大约为 n/(2^m),我们可以看出来这是一个等比数列。

这几级索引的结点总和就是 n/2+n/4+n/8…+8+4+2=n-2,所以跳表的空间复杂度为 o(n)。

那么我们有没有办法减少索引所占的内存空间呢?可以的,我们可以每三个结点抽取一个索引,或者没五个结点抽取一个索引。这样索引结点的数量减少了,所占的空间也就少了。

跳表的插入和删除

我们想要为跳表插入或者删除数据,我们首先需要找到插入或者删除的位置,然后执行插入或删除操作,前边我们已经知道了,跳表的查询的时间复杂度为 O(logn),因为找到位置之后插入和删除的时间复杂度很低,为 O(1),所以最终插入和删除的时间复杂度也为 O(longn)。

我么通过图看一下插入的过程。

file

删除操作的话,如果这个结点在索引中也有出现,我们除了要删除原始链表中的结点,还要删除索引中的。因为单链表中的删除操作需要拿到要删除结点的前驱结点,然后通过指针操作完成删除。所以在查找要删除的结点的时候,一定要获取前驱结点。当然,如果我们用的是双向链表,就不需要考虑这个问题了。

如果我们不停的向跳表中插入元素,就可能会造成两个索引点之间的结点过多的情况。结点过多的话,我们建立索引的优势也就没有了。所以我们需要维护索引与原始链表的大小平衡,也就是结点增多了,索引也相应增加,避免出现两个索引之间结点过多的情况,查找效率降低。

跳表是通过一个随机函数来维护这个平衡的,当我们向跳表中插入数据的的时候,我们可以选择同时把这个数据插入到索引里,那我们插入到哪一级的索引呢,这就需要随机函数,来决定我们插入到哪一级的索引中。

这样可以很有效的防止跳表退化,而造成效率变低。

跳表的代码实现

最后我们来看一下跳变用代码怎么实现。

Views: 6